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Abstract -— The characteristics of wave propagation along
a reactively loaded microstrip operating in its first higher-
order mode are investigated by means of the transverse-
resonance and two-dimensional finite-difference time-domain
techniques. It is found that the phase velocity along the
microstrip and the cutoff frequency of its first higher-order
mode are functions of the reactive-load value. These effects
are used to design fixed-frequency continuously beam-
steerable leaky-wave antennas, and antennas with 2
continucusly adjustable operating frequency range.

I. INTRODUCTION

The leakage mechanism of a microstrip operating in its
first higher-order mode (EH,} has been used successfully
in the design of microstrip leaky-wave antennas [1,2].
Recently, applications employing this microstrip as a
radiating element have appeared in the literature, and have
dealt with fixed-frequency continuous main-beam steering’
[3,4], dual-beam frequency scanning [5], and phased
arrays with a reconfigurable aperture [6].

In [3,4, the leaky-wave microstrip was divided into a
number of regular sections along the direction of wave
propagation.  Identical varactor diodes were used to
connect adjacent sections, s¢ as to form a finite-length
periodic structure. By reverse-biasing the series-connected
varactor diodes between 0 and —900 volts, a 60-degree
scan range was achieved at 5.2 GHz both theoretically and
experimentally. L

Interest in reducing the DC-voltage requirement of the
fixed-frequency continuously beam-steerable periodic
microstrip introduced in [3,4] without resorting to
in shunt through the dielectric,
prompted the author to investigate the propagation
characteristics of waves traveling along a new structure,
the reactively loaded microstrip. The theoretical details of
this investigation will be presented in the sections that
follow, and will focus on the first higher-order mode of
operation.

II. ANALYSIS

A. Propagation-Constant Calculations

A cross-sectional view of the microstrip under
investigation is shown in Fig. 1{(a). A reactive sheet of

0-7803-7695-1/03/$17.00 © 2003 IEEE

821

width <<h, and surface reactance X,.=1/{0C) ({Vsquare)
lies along the bisecting line of the top 2d-wide conductor.
Here, the dielectric thickness /4 is chosen such that surface-
wave modes beyond the TM, mode are cutoff.

The structure shown in Fig. 1(a) supports hybrid modes
whose complex propagation constants may be found by
application of the transverse-resonance technique [2,7,8].
An essential ingredient to the success of this technique is
an accyrate prediction of Z,, the impedance of the open end
located at x==d.
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Fig. 1. A reactively loaded microstrip. (a) Cross-sectional view.
(b} A trapsmission-line mode! for wave propagation along the x
direction.

In [2], a Wiener-Hopf technique was used to find the
impedance of the open end [9], which resulted in an
accurate prediction of the propagation constants of the
modes supported by an unloaded microstrip. Here, the
open-end impedance is found by making use of the two-
dimensional finite-difference time-domain (2D FDTD)
technique [10], in which use is made of a twelve-cell-thick
perfectly matched layer (PML) [11] on the top, left, and
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right walls as shown in Fig. 2. A y-polarized Gaussian
pulse generated by a voltage source located between the
conducting bottom wall and the top strip at x=x, is incident
on the open end. The ratio of the Fourier transforms of the
y-polarized electric field and z-polarized magnetic field at
the open end (x=x;) provides Z;.
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Fig. 2. 2D-FDTD setup for calculating the impedance of the open
end iocated at x =x;,.

The stage is now set for applying the transverse-
resonance technique [2,7.8] to the circuit shown in Fig,
1(b). This resuits in the following equation for the
complex propagation constant along the x direction:

% ~ | ()| +j(r¢+2mr)] 1

n=012,..

where n is the propagation-mode index, I is the reflection
coefficient, Z, is the TEM wave impedance in a dielectric
having a relative constant £, ¢ = 4rg(T'(d)), and

—_]Xs/2 - Z".J

With y, known, the complex propagation constant vy, along
the direction of wave propagation may be calculated
readily using

2)

where k£, is the propagation constant of the TM, surface-
wave mode, assumed by a proper choice of 4 to be the only
propagating one, Egs. (1) and (2) show the dependence of
¥, on the surface reactance X, and thus on the reactive
loading. The extent of this dependence and its
implications will be explored next by means of two
antenna examples.
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B. Dependence of v, on the Value of the Reactive Load

The analysis technique described in Section A was used
to calculate the normalized leakage and propagation
constants of the EH, mode propagating along a reactively
loaded microstrip. The results are shown in Figs. 3 and 4
for different values of C « [0.05, 1.0] pF. Here, the
microstrip  dielectric constant £=2.2, the dielectric
thickness #=0.127 mm, and the strip width 24=3.5 mm.
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Fig. 3. The normalized leakage constant oK, of the EH; mode in
a reactively loaded microstrip with g, = 2.2, 2 = 0,127 mm, 2d =
3.5 mm, and C e [0.05, 1.0] pF. The free-space wave number is
denoted by k. '

Figure 4 shows that an increasing value of C has the
effect of making the microstrip waveguide appear wider,
and causes a downward shift in the cutoff frequency of the
EH, mode. Here, a shift of about 3 GHz in the cutoff
frequency of the EH, mode is observed as C is increased
from 0.05 to 1 pF. Figure 4 also shows that at a constant
frequency f, a continuous increase in the value of C is
accompanied by a continuous decrease in the phase
velocity along the microstrip, and thus a continuous
movement of the main-beam maximum toward endfire.

For a microstrip of length L, the H-plane power-gain
pattern may be calculated by treating the microstrip as a
line source [12], and by making use of the element factor
of an x-directed infinitesimal current element lying on a
grounded dielectric slab of infinite extent [13]. For a
microstrip of length L=4.9 &, where A, is the free-space
wavelength at /=30 GHz, this approach results in the
normalized H-plane power-gain patterns shown in Fig. 5
for different values of C € [0.05, 1.0] pF. This choice of L
ensures that at least 90% of the input power is radiated by
the time the EH, wave reaches the end of the microstrip.



Figure 5 shows that as C is decreased from 1 to 0.05 pF,
the main-beam maximum scans a 35 range at a constant
frequency /~30 GHz. This is accompanied by a widening
of the main beam, and is due mainly to the fact that the
leakage constant o shown in Fig. 3 increases as € is
decreased, resulting in a shorter radiating aperture.
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Fig. 4. The normalized phase constant p/k, of the EH, mode in a
reactively loaded microstrip with ,=2.2, = 0.127 mm, 2d =3.5
mm, and C € [0.05, 1.0] pF.

Normalized H-Plane Power Pattern at £ =30 GHz
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Fig. 5. The normalized H-plane power-gain patterns of the 4,9-2,,-
long reactively loaded microstrip for £, = 2.2, f=30 GHz, and C
€ [0.05, 1.07 pF. The normalization factor for each of the patterns
is its maximum power gain.

An analysis similar to that performed earlier is used in
the case of a microstrip with a dielectric constant £,=3.78,
thickness #=0.127 mm, and strip width 2¢=2.67 mm. The
results are shown in Figs. 6, 7, and 8 for different values of
C € [0.05, 1.0] pF. Here, a 64" main-beam scan range is
achieved at a constant frequency /~30 GHz, and is
accompanied by a shift of about 4 GHz in the cutoff
frequency of the EH, mode.
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Fig. 6. The normalized leakage constant a/k, of the EH, mode in
a reactively loaded microstrip with g,= 3.78, # = 0.127 mm, 2d =
2.67 mm, and C e [0.05, 1.0] pF.
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Fig. 7. The normalized phase constant 3/k; of the EH, mode in a
reactively loaded microsirip with £, = 3.78, 4 = 0.127 mm, 24 =
2.67 mm, and C < [0.05, 1.0] pF.
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Fig. 8. The normalized H-plane power-gain patterns of the 4.9-
Ag-long reactively loaded microstrip for e,= 3.78, =30 GHz, and
C € [0.05, 1.0] pF. The normalization factor for each of the
patterns is its maximum power gain.
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The reactive loading can take the form of a ferroelectric
film such as BST [14]. Alternatively, a periodic array of
ferroelectric strips placed in shunt across the microstrip
center gap can be used, and would result in antennas with a
higher radiation efficiency. Another form of loading is a
periodic array of varactors (Schottky or MEMS [13])
requiring a reverse-bias voltage range that is much smaller
than that used in [3,4], due to the shunt mounting of the
varactors across the microstrip center gap.

ITI. CONCLUSIONS

In conclusion, it was found that the phase velocity along
a reactiviey loaded microstrip operating in its first higher-
order mode may be varied continuously at constant
frequency by varying its surface reactance. This effect can
be used to achieve fixed-frequency continuous main-beam
steering. .

It was also found that a change in the surface reactanc
is accompanied by a shift in the cutoff frequency of the
first higher-order mode. This effect is similar to changing
the width of the microstrip waveguide, and may be used in
the design of antennas with a continuously adjustable
operating frequency range.

It is interesting to note that the reactively loaded
microstrip may be used as a variable-delay transmission
line when operated below f£,, the cutoff frequency of its
first higher-order mode. On the other hand, when loaded
periodically with reverse-biased Schottky varactors, and
driven in large-signal mode at frequencies that are much
smaller than f;;, the structure may be used as a nonlinear
transmission line for the generation of nonlinear waves
such as electrical shock waves and solitons [16].

REFERENCES

[1] W. Menzel, “A new traveling-wave antenna in microstrip,”
Arch. Eleltron. Ubertragungstech., vol. 33, no. 4, pp. 137-
140, April 1979,

A. A. Oliner and K. 8. Lee, “Microstrip leaky-wave
antennas,” 1986 IEEE International Antennas and
Propagation Symposium Digest, Philadelphia, PA, pp. 443-
446, June 8-13, 1986,

K. M. Noujeim, “Fixed-frequency beam-steerable leaky-
wave antennas,” Ph.D. Thesis, University of Toronto,
Ontario, Canada, 1998. :

K. M. Noujeim and K. & Balmain, “Fixed-frequency beam-
stecrable leaky-wave antennas,” XXVI? General Assembly,
International Union of Radio Science (URSI), Aug. 1999,
C.-J. Wang, C. F. Jou, and J.-J Wu, “A novel two-beam
scanning active leaky-wave antenna,” IEEE Transactions on
Antennas and Propagation, vol. 47, no. 8, Aug. 1999.

J. Sor, C.-C. Chang, Y. Qian, and T. Ttoh, “A reconfigurable
leaky-wave/patch microstrip aperture for phased-amray
applications,” IEEE Transactions on Microwave Theory and
Techniques, vol. 50, no. 8, Aug. 2002.

[2]

3]

(4]

[5]

[6]

824

[7]1 N. Marcuvitz, “On field representations in terms of leaky
modes or eigenmodes,” IRE Transactions on Antennas and
Propagation, vol. AP-4, no. 3, pp. 192-194, July 1956.

[8] S. V. Zaitsev and A. T. Fialkovskii, “Edge effects in strip
structures with an arbitrary grazing angle of the wave.
Waves in a microstrip waveguide,” Radio Phys. Quant.
Electron., vol, 24, no. 9, pp. 786-791, Sept. 1981.

[9] D. C. Chang and E. F. Kuester, “Total and partial reflection
from the end of a parallel-plate waveguide with an extended
dielectric slab,” Radio Science, vol. 16, no. 1, pp. 1-13,
Jan.-Feb. 1981.

[10] K. S. Yee, “Numerical solution of initial boundary value
problems involving Maxwell’s equations in isotropic
media,” IEEE Transactions on Antennas and
Propagation, vol. 14, pp. 302-307, 1966.

[11] Y-P. Berenger, “A petfectly matched layer for the absorption
of electromagnetic waves,” Journal of Computational
Physics, vol. 114, pp. 185-200, 1994.

[12] W. L. Stutzman and G. A. Thiele, Antenna Theory and
Design, John Wiley & Sons, Inc., 605 Third Ave., New
York, NY 10158-0012, pp. 137-141 and 173-174, 1981.

[13] P. Perlmutter, S. Shtrikman, and D. Treves, “Electric
surface current mode! for the analysis of microstrip antennas
with  application to rectangular elements,” IEEE
Transactions on Antennas and Propagation, vol. AP-33, no.
3, pp. 301-311, March 1985.

{14] O. Vendik, 1. Mironenko, and L. Ter-Martirosyan,
“Superconductors spur application of ferroelectric films,”
Microwaves & RF, vol. 33, no. 7, pp. 67-70, July 1994,

[15] N. S. Barker, and G. M. Rebeiz, “Distributed MEMS true-
time delay phase shifters and wideband switches,” IEEE
" Transactions on Microwave Theory and Techniques, vol. 46,
no. 11, Nov. 1998.

[16] M. J. W. Rodwell et al, “Active and nonlinear wave
propagation devices in ultrafast  electronics  and
optoelectronics,” IEEE Proceedings, vol. 82, no. 7, pp.
1037-1058, July 1994,



	MTT025
	Return to Contents


